
CHAPTER 7. Evaluation of actionable emotion detector in the wild

Figure 7.2: The subject using E4-wristband during his visit to Vatican City.

His travel was made to Rome (Italy) by four days in the last days of August.
He selected that destination due to his interests in Rome culture; with a particular
interest in the Vatican City because he belongs to the Catholic Church. His activities
are summarized in walking around Rome and the Vatican City and visiting museums,
temples and churches. Figure 7.2 shows the subject using the E4-wristband at St. Pe-
ter’s Square. About the technological skills of the subject, he does not have di�culties
to interact with technological devices or platforms, and the subject has a good back-
ground for using technological services (e.g., social networks, mail). In this context,
Figure 7.1 shows the levels of technological skills of the subject about the technological
expertise and the usage of devices and platforms.

7.1.2 Treatment

The subject used the mobile application Health Care Reminder (Suni Lopez and
Condori-Fernandez, 2017), for reminding him of the intake times of his pills. This
application sent two messages per day: one in the morning (08:00 hours) and the sec-
ond in the night (20:00 hours). The application was developed in Android and was
installed on his mobile phone (a Samsung Galaxy J5), the messages were broadcast
by voice (i.e., using the voice assistant for Android). The settings of the Health Care
Reminder was intentionally changed to generate stress on the subject: i) volume was
changed between high (i.e., maximum volume) and medium; ii) message was replayed
�ve times, and iii) delivered messages changed between two persuasiveness level (i.e.,
authority and consensus) (Suni Lopez and Condori-Fernandez, 2017).
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7.1.
M

ethod

Day Moment Volume Persuasiveness
level

Situation Place User self-
report

Output
stress
detector

Context information

1 Night
(19:43-
20:06)

High Authority Subject was resting in
his hotel room after to
arrive to Rome.

Indoor Stressed Stress de-
tected

27 � C-Passing clouds. Phys-
ical activity: quiet (rest).
Skin temperature: 36.2� C.

2 Morning
(07:43-
08:06)

High Consensus He was at hotel get-
ting ready to go out
(walking around the
room).

Indoor Stressed Stress de-
tected

20 � C Sunny. Physical ac-
tivity: Walking. Skin tem-
perature: 36.0� C.

Night
(19:43-
20:13)

Medium Consensus Subject was hav-
ing dinner at Rome
restaurant.

Outdoor Stressed Stress de-
tected

27 � C Sunny. Physical ac-
tivity: quiet (sitting). Skin
temperature: 36.5� C.

3 Morning
(07:46-
08:06)

High Authority He was walking from
hotel to bus station.

Outdoor Not
stressed

Not stress
detected

22 � C Passing clouds. Phys-
ical activity: walking. Skin
temperature: 36.4� C.

Night
(19:50-
20:20)

High Authority He was resting at hotel
after to visit the Pan-
theon.

Indoor Not
Stressed

Stress de-
tected

28 � C Passing clouds. Phys-
ical activity: quiet (sitting).
Skin temperature: 36.1� C.

4 Morning
(07:46-
08:13)

Medium Consensus He was having break-
fast at Hotel.

Indoor Not
stressed

Not stress
detected

23 � C Sunny. Physical ac-
tivity: quiet (sitting). Skin
temperature: 36.2� C.

Night
(19:12-
19:34)

High Authority He was sitting at
Rome Airport waiting
for his 
ight.

Indoor Not
stressed

Not stress
detected

29 � C Passing clouds. Phys-
ical activity: Quiet (sit-
ting). Skin temperature:
36.4 � C.

Table 7.1: Summary of the di�erent contexts when the messages were delivered.
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CHAPTER 7. Evaluation of actionable emotion detector in the wild

7.1.3 Measurement

The E4-wristband has a signi�cant advantage in front of the most sensors because it
unobtrusively collects data, in such a way the E4-wristband could be part of the user
environment and it does not in
uence in the perception of stress. Figure 7.2 shows
the mentioned device used by the subject and its correct position in the user’s wrist.
EDA signals were collected to be used by the stress detector. The context analyzer
was integrated by the skin temperature to evaluate if relevant temperature changes
can increase EDA signals, accelerometer data to detect physical activity of the subject,
weather, locations, and activities. The collection of data only was from some activities
of the user, due to the limited memory of the E4-wristband2.

Figure 7.3: Activities of the subject during the day one. EDA signals were collected by
three times in this day; each line chart represents the data collection over an interval
of time during some activity of the subject.

7.2 Findings

Table 7.1 summarizes details about the context of the delivered messages3: intervals of
time when data was collected, settings used by the Health Care Reminder application
to generate stress (persuasiveness level and level of volume), and description of the
subject context at the moment when the message was delivered. The Health Care
Reminder emitted in total seven persuasive messages during the four tourism days
(one the �rst day and twice the rest of days). Data collection began approximately

2https://www.empatica.com/en-eu/research/e4/
3Raw data of the subject activities of each day can be found at https://goo.gl/hGwPpk
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7.2. Findings

15 minutes before the application sends the message and the collection ended �ve
minutes after (20 minutes on average). As emotions can vary in intensity on day-to-
day during tourism visits, the results analysis is organized per day for helping to answer
the proposed research questions that are discussed in Section 7.3.

7.2.1 Day one

The collection of data began around midday, the activities of the subject were summa-
rized to move (e.g., traveling by train, sitting on an airplane) from his temporary home
(The Netherlands) to Rome (Italy). This day, EDA signals were collected by three
times at di�erent intervals of time. For instance, the �rst collection was taken from
12:43 to 13:20 hours during the traveling of the subject by train that is represented as
a line chart in Figure 7.3. After processing these signals, the stress detector did not
recognize any relevant stress change.

(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.4: Analysis of EDA signals for day one. (a) EDA signals during �rst message
of day one. (b) Processed signals and stress detection of �rst message of day one.

Health Care Reminder emitted only one message of the authority level with the
maximum volume, Figure 7.4a shows raw EDA signals and the processed EDA signals
with the speci�c moment when the subject felt stress as shown in Figure 7.4b. During
that moment, the subject was taking a break in his hotel room. The subject reported
that the delivered message caused stress, which was also successfully detected by the
detector, therefore the emotion was also recognized as actionable. Finally, Figure 7.5
shows a pie chart with a summary of processed stress levels about subject activities
during day one, where only the 12% of the collected time of the activities the subject
was stressed corresponding to the interval of time when the reminder was delivered and
any other type of emotional triggers that were not detected (e.g., feelings).

7.2.2 Day two

The activities of the subject during the morning of the second day were not relevant
because he was walking; however, during the afternoon, he continued walking around
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CHAPTER 7. Evaluation of actionable emotion detector in the wild

Figure 7.5: Stress levels (SAX representation from 1 to 5) of the subject during the
day one.

the downtown of Rome. Both the physical activity (walking) and the hot weather
(27 � C) in
uenced on the EDA values.

As it is shown in Figure 7.6, a notable change of stress is appreciated from 13:30
hours. During this time, the subject was in the security control of the museumSacrario
delle Bandiere delle Forze Armate. The detection of stress is consistent with the situ-
ation that the subject con�rmed have experienced; however, the detected stress state
is not considered as actionable because the software service did not cause it.

Figure 7.6: Activities of the subject during the day two. EDA signals were collected
by four times in this day over di�erent intervals of time, and the mobile application
sent two persuasive messages (blue marks), at 08:00 and 20:00 hours.

The �rst persuasive message was about consensus level with high volume, at this
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(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.7: Analysis of EDA signals for the �rst message in the day two. (a) EDA
signals during �rst message. (b) Processed signals and stress detection of �rst message.

(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.8: Analysis of EDA signals for the second message in the day two. (a) EDA
signals during second message. (b) Processed signals and stress detection of second
message.

moment the subject was walking in his room that corresponds with the detection of the
physical movement analyzer (see Figure 7.7). The second message was of consensus
level with medium volume when the subject was sitting (a quiet state according to
the physical movement analyzer) to have dinner at a traditional Rome restaurant (see
Figure 7.8). In both cases, the subject reported he felt stress and match with the result
of the stress detector. In this case the inference engine reported the detected stress
during the �rst message as non-actionable emotion (only stress detected) because at the
same time an emotional trigger was detected (physical movement); on the other hand,
during the second message the recognized stress was labelled as actionable because any
emotional trigger was not detected. Figure 7.9 indicates that the 25% of the total time
the subject was stressed, which both the output of the stress detector and the record
of activities the 25% corresponding to periods of message delivery, security controls,
and other not modelled triggers.
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CHAPTER 7. Evaluation of actionable emotion detector in the wild

Figure 7.9: Stress levels (SAX representation from 1 to 5) of the subject during the
day two.

7.2.3 Day three

Figure 7.10 illustrates the di�erent activities of the subject on day three; he took a
walking tour for visiting di�erent Roman architectures. The weather of this day was
around 25 � C; for that reason, the EDA values collected from the subject were high
(higher than 10 � S).

Figure 7.10: Activities of the subject during the day three. This day was collected
four set of EDA signals in di�erent intervals of time. The blue marks indicate the hour
when the messages were sent to the subject.

During the �rst message, the subject was walking from hotel to bus station to
go to Pantheon, and other former Roman temples, Figure 7.11 illustrates the �rst
message was delivered at 08:00 hours with high volume and of authority level; in this

Master Program in Computer Science - UCSP 55



7.2. Findings

(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.11: Analysis of EDA signals for the �rst message in the day three. (a) EDA
signals during �rst message. (b) Processed signals and stress detection of �rst message.

(a) Raw EDA signals.
(b) Processed EDA signals.

Figure 7.12: Analysis of EDA signals for the second message in the day three. (a)
EDA signals during second message. (b) Processed signals and stress detection of
second message.

case, the detector matched with the subject self-report (non-emotion and consequently
non-actionable emotion). Figure 7.12 presents EDA signals of the second message that
is a particular case due to the subject reported that he did not feel stress because at
that moment he was resting at the hotel; however, the stress detector recognized an
episode of stress. According to the inference engine, the detected stress during the
second message was labelled as an actionable emotion because any emotional trigger
in
uenced at the same time. Figure 7.13 shows the stress levels inferred after analyzing
the collected data, and it presents that 13% of the total time the subject was stressed
(corresponding to the security control at a museum and the passing moments).

7.2.4 Day four

The �rst message (with medium volume and of consensus level), was delivered while the
subject was having breakfast at the hotel, his physical activity was quiet (i.e., sitting).
According to the stress detector, this message did not generate him an episode of stress
that corresponds with the self-report of the subject, as it is shown in Figure 7.15. Figure
7.14 shows that the second message was emitted thirty minutes before the usual time
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CHAPTER 7. Evaluation of actionable emotion detector in the wild

Figure 7.13: Stress levels (SAX representation from 1 to 5) of the subject during the
day three.

because the subject had to board his return 
ight at Fiumicino Airport (Rome). During
this message, the subject was sitting on the departure lounge of the airport; Figure 7.16
shows that the stress detector did not recognize any stress state that also corresponded
with a not-stress self-report. In both cases (during the messages), the inference engine
labelled as non-actionable emotions.

Figure 7.14: Activities of the subject during the day four. During this day, four sets of
EDA signals were collected. The second and the fourth are the most longest because
the subject has a lot of activities to be considered in this experiment.

Figure 7.14 details di�erent subject’s activities, in the morning he visited the
Vatican City, and he participated in Catholic activities. The stress episodes (16%
showed in Figure 7.17) recognized by the stress detector correspond with the security
control for entering the Vatican City and with the moment when he lost the train to
go back home.
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(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.15: Analysis of EDA signals for the �rst message in the day four. (a) EDA
signals during �rst message. (b) Processed signals and stress detection of �rst message.

(a) Raw EDA signals. (b) Processed EDA signals.

Figure 7.16: Analysis of EDA signals for the second message in the day four. (a) EDA
signals during second message. (b) Processed signals and stress detection of second
message.

Figure 7.17: Stress levels (SAX representation from 1 to 5) of the subject during the
day four.

7.3 Chapter discussion

� RQ 1. In real-world conditions, there exist many factors that could generate dif-
ferent emotions in a user (e.g., a security control). For that reason, in the emo-
tion recognition tasks, it is important to detect those possible emotional triggers
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CHAPTER 7. Evaluation of actionable emotion detector in the wild

(threats) for understanding better the obtained results regarding the performance
of the actionable emotion detector. To address this issue in this case study, the
context analyzer of the actionable emotion detector used di�erent kinds of data:
the skin temperature and physical activity data that were monitored using the E4-
wristband. With that information the context analyzer was able to deal with two
emotional triggers: environmental (subject temperature) and physical movements
(moving or quiet). Additionally, those previous results were then combined with
post hoc interviews, including time, locations, and activities to aid interpretation
of the obtained results and �ltering possible emotional triggers. Then, the most
in
uential emotional trigger was the environmental (i.e., subject temperature due
to high temperatures of the weather); for that reason, most of the collected EDA
values were high (greater than 10�S ). In general, this external threat has been
challenging to address, and it in
uenced profoundly in the EDA measurement
and consequently the evaluation of the actionable emotions. Nonetheless, the in-
formation of the subject temperature from the context analyzer was fundamental
to the interpretation of the results. In the other hand, during the study, other
emotional triggers happened (e.g., security control) that were not modeled by
the context analyzer. For instance, in a section of the population, not having
knowledge of the utility of a software service or not knowing the usefulness of
some devices or electronic instruments can generate stress (those factors can be
classi�ed as a perception emotional trigger). Additionally, di�erent works have
been proposed for analyzing the relationship between the usage of technology and
the stress on users (e.g.,A�� et al., 2018; Peek et al., 2015; Vaportzis et al., 2017;
Arnetz and Wiholm, 1997). In line with these notions, the used technologies in
this case study (i.e., the smartphone and the E4-wristband) could also act as an
emotional trigger if the continuous usage caused a negative emotion (any user
dissatisfaction). However, the good technological skills of the subjects allowed to
have a nice interaction with the software service (i.e., mobile application). Also,
in the post hoc interviews the subject reported that the E4-wristband did not
cause any discomfort because that device is like a watch. According to these
�ndings, in future works, it is needed to provide more information to the context
analyzer about the user context, it could be adding more sensors and combining
with the information already obtained. For instance, in this case study, the con-
text analyzer only detected two states (i.e., quiet or moving) for modelling the
physical movements. However, if the accelerometer and gyroscope data of the
smartphone are combined with the accelerometer and heart rate data from the
E4-wristband, then it is possible to recognize with more precision extra physical
states (e.g., running or walking) (e.g., Shoaib et al., 2013; Prudêncio et al., 2013;
Wannenburg and Malekian, 2017). In the same line, the gathered data about the
time and location could be combined with the data of a GPS sensor, address-
ing challenges posed by urban environments (e.g., tra�c information) (Agarwal
et al., 2002).

� RQ 2.Tourism and vacations are moments to escape from the daily stress of work,
from the anguish of schedules or overcrowded agendas. However, some of these
activities can generate stress in travelers too. According to a study published in
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Travel Manager4 magazine, 42% of travelers say that going to an airport causes
stress and 23% compare it with making a move. Others factors like the tourist
do not know to speak the native language of the destination have been studied
in di�erent works ( e.g., Waterhouse et al., 2004; Chen et al., 2014). In this case
study, it was also collected the information about the daily activities performed
by the subject. According to the evaluation of stress of the activities per each day
(presented in Figures 7.5, 7.9, 7.13 and 7.17), 16.5% of the all activities during
the study (i.e., the four days) the subject was stressed (e.g., during the secu-
rity controls at museums). Figure 7.18 presents a classi�cation of the subject’s
activities into the emotional triggers organization of Kanjo et al. (2015), where
the most frequent emotional trigger in the case study was the environment with
42% (i.e., the hot weather). Overall, these results indicate that the main cause
of stress during the travel of the subject was generated by the hot weather of
Rome.

Figure 7.18: Classi�cation of the tourist activities according to the emotional trigger
classi�cation of Kanjo et al. (2015).

� RQ 3. Firstly, it is important to remark that the context analyzer could detect
the 66% of the possible emotional triggers. This is due that the context ana-
lyzer only used information from the physical activity, skin temperature, time,
locations, weather, and tourist activities. Additionally, for analyzing the 100% of
the emotional triggers it is required more sensors (e.g., cameras, microphones).
However, comparing theUser self-report column with the Output stress detector
column, and using the context information (i.e., physical activity, skin tempera-
ture, time, locations, weather and activities) from the Table 7.1, the actionable
emotion detector for this case study obtained 85.7% of accuracy (6/7). Also, the
intentional changes in the Health Care Reminder showed that generated stress
on the subject only the �rst two days. According to the post hoc interviews, the
subject reported that the messages delivered from the third day, did not generate
stress because he knew that message would be emitted two times during the day
and he was already resilient for theannoying message.

4https://revistatravelmanager.com/
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Chapter 8

Conclusions

Given the advancement of wearable sensors and emotion recognition from physiological
data, this research proposes to detect actionable emotions as implicit user feedback
for adapting con�gurations of software services. As part of this proposal, a software
architecture was proposed in Chapter 4.

In one hand, the circumplex model of 2.1 was selected as the most suitable emo-
tional model because this model classi�es the stress in the quadrant ofArousal and
Unpleasant. In this direction, the real-time emotion detector used an arousal-based
statistical approach that does not need a big dataset to learn a model for recognizing
stress and can work on di�erent tasks. In this context, the experiment for evaluating
the accuracy only of the stress detector showed that it obtained 79.17% of accuracy.

On the other hand, the context analyzer was modelled to detect three emotional
triggers: environmental noise, physical movements, and interaction with others from
(Kanjo et al., 2015). These triggers was selected because in the literature they are
the most studied as stressful. The environmental noise was modeled with a deci-
bel threshold approach using the microphone data of a mobile phone. For detecting
physical movements, a threshold-based proposal using accelerometer data from the E4-
wristband was adopted. These two methods obtained a 100% of accuracy. However,
the algorithm used to detect the interaction with others obtained an accuracy of 37.5%.

Regarding the experiments, 23 subjects were involved in three experiments con-
ducted to evaluate the di�erent proposed requirements. The experiments allowed to
�nd a balanced interval of time of three minutes between the freshness requirement
and the accuracy requirement. Also, the results showed the 
exibility and scalability
requirement are limited to the capability of the mobile device where the actionable
emotion detector will be deployed. In real-life conditions, the context analyzer showed
to be essential for the evaluation of actionable emotions. However, for a better assess-
ment of actionable emotions in real-life conditions, it is needed to add more sensors
for detecting with more precision actionable emotions. Overall, the results of this re-
search demonstrate that stress levels expressed by users during the interaction with
service-based applications can be used as implicit feedback.
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8.1. Limitations and future works

8.1 Limitations and future works

Subjects involved in the experiments. Di�erent well-known emotional triggers
from the psychology community were selected to evaluate the performance of the ac-
tionable emotion detector. However, the selected triggers could not always generate
stress on the subjects (programmers and researchers in computer science) due to dif-
ferent factors (e.g., greater resilience) that were not investigated in this work. On the
other hand, due to the low number of subjects and their similar occupation (computing-
related areas), one potential threat is regarding the generalization of our results. In
order to generalize our results, it is needed to involve more diverse subjects in further
studies.

Physiological datasets. The emotion detection from physiological data has been
studied by many years. However, exist a lack of physiological datasets, and it is a
problem that should be addressed. The creation of a labeled dataset could allow to
benchmark algorithms for detecting emotions.

Emotional triggers from user context. At the �nal of the two experiments and
the case study; it is possible to conclude that for modeling the di�erent emotional
triggers from the user context is a di�cult task, because the context analyzer requires
a huge amount of data from di�erent sensors, and this must also be accompanied by
hardware capable to process those quantities of information. A further study could
investigate other variables that could have been a�ecting to the user context. For
instance, if the accelerometer and gyroscope data of the smartphone are combined
with the accelerometer and heart rate data from the E4-wristband, then it is possible
to recognize with more precision extra physical states (e.g., running or walking) (e.g.,
Shoaib et al., 2013; Prudêncio et al., 2013; Wannenburg and Malekian, 2017). In the
same line, the gathered data about the time and location could be combined with
the data of a GPS sensor, addressing challenges posed by urban environments (e.g.,
tra�c information) (Agarwal et al., 2002). In the other hand, the emotion detector and
context analyzer could be improved by exploring new techniques of machine learning
(e.g., Smith et al., 2006; Bernardin and Stiefelhagen, 2007) focused on detecting the
emotional trigger: \interaction with others" (which obtained a low accuracy in the
second experiment, presented in the Chapter 6).

Implicit user feedback challenges. In emotion recognition tasks, there still many
challenges (e.g., user experience or adaptability). However, this study allowed to iden-
tify two challenges regarding: i) privacy protection in explicit feedback (e.g.,Sayed and
Reeba, 2016); and ii) the optimization of energy consumption in context-aware mobile
applications; for instance, the battery of the E4-wristband inrecording mode(save data
in the E4-wristband memory) collects 48 hours approximately and instreaming mode
(by Bluetooth) around 24 hours. A future work could investigate other sensing devices,
for example, the Moodmetric ring1 that has a battery life of approximately one week,
and it could be used in long-term studies.

1http://www.moodmetric.com/
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