Dynamic and recursive oil-reservoir proxy using Elman neural networks

No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Abstract
In this work, a reservoir simulation approximation model (proxy) based on recurrent artificial neural networks is proposed. This model is intended to obtain rates of oil, gas and water production at time t+1 from the respective production rates, average pressure and water cut at t time and the well operation points to be applied in t + 1. Also, this model is able to follow the dynamics of the reservoir system applying online learning from real production observed values. Also, this model allows perform fast and accurate production forecasting for several steps using a recursive mechanism. This model will be inserted into an oil-production control tool to find the optimal operation conditions within a forecast horizon. The obtained outcomes over the approximation tests indicate the methodology is adequate to perform production forecasts. © 2016 IEEE.
Description
Citation
Collections