Deep neural networks based on gating mechanism for open-domain question answering

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
Universidad Católica San Pablo
Nowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention. In Contrast, few related work has focused on improving the Context Encoder. Thus, our work has explored in depth the Context Encoder. We propose a gating mechanism that controls the ow of information, from the Context Encoder towards Interaction Encoder. This gating mechanism is based on additional information computed previously. Our experiments has shown that our proposed model improved the performance of a competitive baseline model. Our single model reached 78.36% on F1 score and 69.1% on exact match metric, on the Stanford Question Answering benchmark.