A biologically motivated computational architecture inspired in the human immunological system to quantify abnormal behaviors to detect presence of intruders

No Thumbnail Available
Date
2006
Journal Title
Journal ISSN
Volume Title
Publisher
Scopus
Abstract
In this article is presented a detection model of intruders by using an architecture based in agents that imitates the principal aspects of the Immunological System, such as detection and elimination of antigens in the human body. This model is based on the hypothesis of an intruder which is a strange element in the system, whereby can exist mechanisms able to detect their presence. We will use recognizer agents of intruders (Lymphocytes-B) for such goal and macrophage agents (Lymphocytes-T) for alerting and reacting actions. The core of the system is based in recognizing abnormal patterns of conduct by agents (Lymphocytes-B), which will recognize anomalies in the behavior of the user, through a catalogue of Metrics that will allow us quantify the conduct of the user according to measures of behaviors and then we will apply Statistic and Data Minig technics to classify the conducts of the user in intruder or normal behavior. Our experiments suggest that both methods are complementary for this purpose. This approach was very flexible and customized in the practice for the needs of any particular system. © 2006 International Federation for Information Processing.
Description
Citation
Collections