Safe path planning algorithms for mobile robots based on probabilistic foam

No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract
The planning of safe paths is an important issue for autonomous robot systems. The Probabilistic Foam method (PFM) is a planner that guarantees safe paths bounded by a sequence of structures called bubbles that provides safe regions. This method performs the planning by cov-ering the free configuration space with bubbles, an approach analogous to a breadth-first search. To improve the propagation process and keep the safety, we present three algorithms based on Probabilistic Foam: Goal-biased Probabilistic Foam (GBPF), Radius-biased Probabilistic Foam (RBPF), and Heuristic-guided Probabilistic Foam (HPF); the last two are proposed in this work. The variant GBPF is fast, HPF finds short paths, and RBPF finds high-clearance paths. Some simulations were performed using four different maps to analyze the behavior and performance of the methods. Besides, the safety was analyzed considering the new propagation strategies. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Description
Citation
Collections